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Abstract

Frames normal for derivations of the tensor algebra over a manifold and for linear connections in
vector bundles are defined and studied. In particular, such frames exist at every fixed point and/or
along injective path. Inertial frames for gauge fields are introduced and on this ground the principle
of equivalence for (system of) gauge fields is formulated.
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1. Introduction

Until 1992, the existence of normal frames and coordinates was known at a single point
and along injective paths only for symmetric linear connections on a manifold; besides, a
necessary and sufficient condition for the existence of these frames on submanifolds for
the mentioned connections was found[1]. The papers[2–4] (see also their early versions
[5–7]) completely solved the problems of existence, uniqueness and holonomicity of frames
normal on submanifolds for derivations of the tensor algebra over a manifold, in particular
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for arbitrary, with or without torsion, linear connections on a manifold. At last, these results
were generalized in[8] for linear transports along paths in vector bundles. The present work
can be considered as a review, continuation and application of the cited references.

Section 2of the work, consisting ofSections 2.1–2.5, is devoted to frames normal for
derivations of the tensor algebra over a manifold. It is an updated review of[2–4]. In
Section 3, consisting ofSections 3.1–3.5, are investigated similar problems concerning
arbitrary linear connections in vector bundles.

In Section 2.1are reviewed some basic concepts regarding derivations of the tensor
algebra over a differentiable manifold and the general concept of a frame normal for them
is introduced.Section 2.2is devoted to the general existence, uniqueness and holonomicity
of frames normal for derivations along (arbitrary) vector fields. A necessary and sufficient
condition for existing of such frames along (locally) injective mappings is proved. The
results obtained are specialized at a single point, along (locally) injective paths and on
neighborhoods. Similar problems concerning frames normal for derivations along a fixed
vector field are studied inSection 2.3. Special attention on frames normal for derivations
along smooth paths is paid inSection 2.4. Some basic results ofSections 2.1–2.4are
specialized for linear connections on a manifold inSection 2.5.

Section 3.1recalls the most suitable definition of a linear connection in a vector bundle
and some consequences of it.Section 3.2summarizes basic concepts of the theory of linear
transports along paths in vector bundles. InSection 3.3are proved necessary and sufficient
conditions for a derivation or a linear transport along paths in vector bundles to define a
linear connection. An explicit bijective correspondence between a particular class of such
objects and the set of linear connections is derived. The parallel transports generated by
linear connections are described in terms of linear transports along paths.

In Section 3.4, the frames normal for linear connections in vector bundles are defined
and the basic equation responsible for their existence and properties is derived. Since this
equation coincides with similar equation investigated inSection 2, the conclusion is made
that the results ofSection 2can mutatis mutandis be applied to solve similar problems
concerning frames normal for linear connections in vector bundles. Some particular results
are written explicitly.

In Section 3.5is shown how inertial frames in gauge field theories should be introduced.
The principle of equivalence, which in fact is a theorem, for a particular gauge field is
formulated. An example is presented for the introduction of inertial frames and formulation
of the equivalence principle for a system of gauge fields (and, possibly, gravitational one).
Section 4gives the conclusion.

2. Normal frames for derivations of the tensor algebra over a manifold

The present, second, section of this investigation is a revised, updated and unified version
of the material in[2–4], where references to original papers are given. The introductory
text, concerning derivations of the tensor algebra over a manifold, is abstracted mainly from
[9], where further details can be found. Frames normal for such derivations are defined and
studied, at first, in the general case on arbitrary subsets/submanifolds and, then, the results
obtained are specialized for more particular cases.
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2.1. Derivations, their components, curvature and torsion

A derivation of the tensor algebraT(M) over a differentiable manifoldM, dimM <∞,
is a linear mappingD : T(M) → T(M) which satisfies the Leibnitz differentiation rule
with respect to the tensor product, preserves the tensor’s type, and commutes with the
contractions of tensor fields[10, Ch. I, Section 3]. By [10, Proposition 3.3 of Chapter I]any
D admits a unique representation in the formD = LX+S for some (unique for a givenD)
vector fieldX and tensor fieldS of type(1,1). HereLX is the Lie derivative alongX [9]
andS is considered as a derivation ofT(M) [10], which for a covariant derivative∇ is given
throughSX(Y ) = ∇X(Y ) − [X, Y ], Y being a vector field and [X, Y ] := X ◦ Y − Y ◦ X.
Since the dependence ofD onX will be important further, we shall writeDX for D, with
D = LX + S, and say thatDX is aderivation alongX; a mappingD : X 
→ LX + S will
be called aderivation along vector fields, an example being∇ : X 
→ ∇X.

Let {Ei, i = 1, . . . , n := dim(M)} be a (coordinate or not[11]) local frame (field of
bases) of vector fields in the tangent toM bundle. It is holonomic (anholonomic) if the
vectorsE1, . . . , En commute (do not commute)[11]. Let T be aC1 tensor field of type

(p, q), p andq being integers or zero(s), with local componentsT
i1,...,ip
j1,...,jq

with respect to
the tensor frame associated with{Ei}. Here and below all Latin indices, maybe with some
super- or subscripts, run from 1 ton := dim(M). Using the explicit action ofLX andSX on
tensor fields[10] and the usual summation rule about indices repeated on different levels,
we find the components ofDXT to be

(DXT )
i1,...,ip
j1,...,jq

=X(T i1,...,ipj1,...,jq
)+

p∑
a=1

(ΓX)
ia
k T

i1,...,ia−1kia+1,...,ip
j1,...,jq

−
q∑
b=1

(ΓX)
k
jb
T
i1,...,ip
j1,...,jb−1kjb+1,...,jq

. (2.1)

HereX(f )denotes the action ofX = XiEi on aC1 scalar functionf , i.e.X(f ) = XkEk(f )
and the explicit form ofΓX is

(ΓX)
i
j = (SX)ij − Ej(Xi)+ CikjX

k, (2.2)

whereCikj define the commutators of the basic vector fields by [Ej ,Ek] = CijkEi . We call

(ΓX)
i
j thecomponentsof DX. In particular, we have

DX(Ej ) = (ΓX)ijEi. (2.3)

The change{Ei} 
→ {E′
m := AimEi}, A := [Aim] being a non-degenerate matrix func-

tion, implies the transformation of(ΓX)ij into (see(2.3)) (Γ ′
X)
m
l = (A−1)mi A

j
l (ΓX)

i
j +

(A−1)mi X(A
i
l ). Introducing the matricesΓX := [(ΓX)ij ] andΓ ′

X := [(Γ ′
X)
m
l ] and putting

X(A) := XkEk(A) = [XkEk(Aim)], we get

Γ ′
X = A−1{ΓXA+X(A)}. (2.4)
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If ∇ is a linear connection with local coefficientsΓ ijk (see, e.g.[10,12,13]), then∇X(Ej ) =
(Γ ijkX

k)Ei [10]. Hence, we see from(2.3) thatDX is a covariant derivative alongX iff

(ΓX)
i
j = Γ ijkXk (2.5)

for some functionsΓ ijk.
Let D be a derivation along vector fields andX andY be vector fields. Thetorsion

operatorT D of D and thecurvature operatorRD of aC1 derivationD (i.e. (ΓX)ij areC1

functions) are defined respectively by

T D(X, Y ) := DXY −DYX − [X, Y ],

RD(X, Y ) := DX ◦DY −DY ◦DX −D[X,Y ] . (2.6)

A derivationD is torsion-free(resp.curvature-freeor flat) on a setU ⊆ M if T D = 0
(resp.RD = 0) on this set (cf.[10]).

Using the equationDX = LX + SX, one finds the following representations for the
curvature and torsion operators:

RD(X, Y ) = SX ◦ SY − SY ◦ SX + [X, SY ·] − [Y, SX·]
+ SX([Y, ·])− SY ([X, ·])− S[X,Y ],

T D(X, Y ) = SX(Y )− SY (X)+ [X, Y ].

We have for them, respectively, the following local expressions:

[(RD(X, Y ))ij ] = X(ΓY )− Y (ΓX)+ ΓXΓY − ΓYΓX − Γ[X,Y ], (2.7)

(T D(X, Y ))i = (ΓX)ijY j − (ΓY )ijXj − CijkXjY k. (2.8)

For a linear connection∇ is fulfilled (R∇(X, Y ))ij = RijklX
kY l and (T ∇(X, Y ))i =

T iklX
kY l , whereRijkl andT ikl are the components of the usual curvature and torsion ten-

sors, respectively[10,11].
Further in this work we shall investigate a special class of frames (fields of bases) which

are singled out by the following definition.

Definition 2.1. Given a derivationDX of the tensor algebra over a manifoldM and a subset
U ⊆ M. A frame{Ei} defined over an open subsetV of M containingU or equal to it,
V ⊇ U , is callednormal forDX overU if in it the components ofDX vanish everywhere
onU . A frame isnormal for a derivationD : X 
→ DX along vector fields, if it is normal
for DX for everyX. Respectively,{Ei} is normal forDX along a mappingg : Q → M,
Q �= Ø, if {Ei} is normal forDX overg(Q).

All of the information about normal frames, e.g. their existence and uniqueness, is en-
coded in the transformationequation (2.4). Indeed, given an arbitrary frame{Ei} over
V ⊇ U , a frame{E′

i = Aji Ej } is normal forDX overU iff ΓX′i
j
|U = 0, which, by virtue

of (2.4), is equivalent to

(ΓXA+X(X))|U = 0. (2.9)
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The properties of the solutions of this equation relative toA = [Aji ], if any, are responsible
for all properties of the frames normal forDX on U . We call this (matrix) equation the
equation of the frames normal forDX onU or simply thenormal frame(s) equation(for
DX onU ). The exploration of this equation is the main purpose of what follows below in
the present part of our investigation.

2.2. Normal frames for derivations along vector field

LetU be a subset of a manifoldM andD be a derivation along vector fields, i.e.DX to be
a derivation alongarbitrary (every)vector fieldX onM. Problems concerning existence,
uniqueness and holonomicity of frames normal forD onU will be studied bellow.

Definition 2.2. A derivationD (resp.DX) along vector fields (resp. along a vector fieldX)
is calledlinear onU ⊆ M if in some (and hence in any—see(2.4)) frame{Ei}, defined on
U or on a larger set, is fulfilled

ΓX(x) = Γk(x)Xk(x) (2.10)

for every (resp. the given) vector fieldX. Herex ∈ U , X = XkEk, andΓk are some
matrix-valued functions onU .

Evidently, a linear connection (covariant derivative)∇ : X 
→ ∇X is a derivation linear
on anyU ⊆ M (see(2.5)). The importance ofDefinition 2.2in the theory of normal frames
is established by the following result.

Proposition 2.1. If for some derivation D along vector fields(resp.DX along a vector field
X), there exists a frame normal for it onU ⊆ M, then D(resp. DX) is linear on U, i.e.,
the linearity of a derivation on a set is a necessary condition for the existence of frame(s)
normal for it on U.

Proof. Let us fix a frame{Ei} and putE′
i = Aji Ej . ThenΓ ′

X|U = 0, i.e.Γ ′
X(x) = 0 for

x ∈ U , which, in conformity with(2.4), is equivalent to(2.10)with Γk = −(Ek(A))A−1,
A = [Aij ]. �

The opposite statement toProposition 2.1is generally not true and for its appropriate
formulation we need some preliminary results and explanations.

Let p be an integer,p ≥ 1, and the Greek indicesα andβ run from 1 top. Let Jp be a
neighborhood inRp and{sα} = {s1, . . . , sp} be Cartesian coordinates inRp.

Lemma 2.1. LetZα : Jp → GL(m,R), GL(m,R) being the group ofm×mmatrices on
R, beC1 matrix-valued functions onJp. Then the initial-value problem

∂Y

∂sα

∣∣∣∣
s

= Zα(s)Y, Y |s=s0 = 1, α = 1, . . . , p, (2.11)

where1 := [δij ]
m
i,j=1 is the identity(unit) matrix of the corresponding size, s ∈ Jp, s0 ∈

Jp is fixed, and Y ism × m matrix function onJp, has a solution, denoted byY =
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Y (s, s0;Z1, . . . , Zp), which is unique and smoothly depends on all its arguments if and
only if

Rαβ(Z1, . . . , Zp) := ∂Zα

∂sβ
− ∂Zβ
∂sα

+ ZαZβ − ZβZα = 0. (2.12)

Proof. According to the results from[14, Chapter VI], in whichZ1, . . . , Zp are of class
C1, the integrability conditions for(2.11)are (cf.[14, Chapter VI, Eq. (1.4)])

0= ∂2Y

∂sα∂sβ
− ∂2Y

∂sβ∂sα
= ∂(ZβY )

∂sα
− ∂(ZαY )

∂sβ

= ∂Zβ
∂sα

Y − ∂Zα
∂sβ

Y + ZβZαY − ZαZβY = −Rαβ(Z1, . . . , Zp)Y.

Hence (see, e.g.[14, Chapter VI, Theorem 6.1]) the initial-value problem(2.11)has a unique
solution (of classC2) iff (2.12)is satisfied. �

Letp ≤ n := dim(M), α, β = 1, . . . , p andµ, ν = p+1, . . . , n. Letγ : Jp → M be a
C1 mapping. We suppose that for anys ∈ Jp there exists its (p-dimensional) neighborhood
Js ⊆ Jp such that the restricted mappingγ |Js : Js → M is without self-intersections (is
injective), i.e. inJs do not exist pointss1 ands2 �= s1 with the propertyγ (s1) = γ (s2). This
assumption is equivalent to the one that the points of self-intersections ofγ , if any, can be
separated by neighborhoods. For brevity, we call such mappingslocally injective. With Jps ,
we denote the union of all the neighborhoodsJs with the above property; evidently,Jps is
the maximal neighborhood ofs in whichγ is injective.

Let us suppose at first thatJps = Jp, i.e. thatγ is without self-intersection, and that
γ (Jp) is contained in a single coordinate neighborhoodV ofM.

Let us fix some one-to-one ontoC1 mappingη : Jp×J n−p → M such thatη(·, t0) = γ
for a fixed t0 ∈ J n−p, i.e. η(s, t0) = γ (s), s ∈ Jp. In V ∩ η(Jp, J n−p), we define
coordinates{xi} by putting (x1(η(s, t)), . . . , xn(η(s, t))) := (s, t) ∈ R

n, s ∈ Jp, t ∈
J n−p.

Proposition 2.2. Letγ : Jp → M be aC1 injective mapping such thatγ (Jp) lies only in
one coordinate neighborhood. Let a derivation D along vector fields be linear onγ (Jp).
Then a necessary and sufficient condition for the existence of a frame{E′

i}, defined in a
neighborhood ofγ (Jp), which is normal for D onγ (Jp) is the validity in the above-defined
coordinates{xi} of the equalities

[Rαβ(−Γ1 ◦ γ, . . . ,−Γp ◦ γ )]|Jp = 0, α, β = 1, . . . , p, (2.13)

whereRαβ(· · · ) are defined by(2.12)for m = n and(s1, . . . , sp) = s ∈ Jp, i.e.

[Rαβ(Γ1 ◦ γ, . . . , Γp ◦ γ )](s)
= ∂Γα(γ (s))

∂sβ
− ∂Γβ(γ (s))

∂sα
+ (ΓαΓβ − ΓβΓα)|γ (s). (2.14)

Remark 2.1. This result was obtained by means of another method in[1] for the special
case whenD is a symmetric affine connection andU is a submanifold ofM.
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Proof. The following considerations will be done in the above-defined coordinate neigh-
borhoodV ∩ η(Jp, J n−p) and coordinates{xi}. LetEi = ∂/∂xi .

NECESSITY.Let there exists a normal frame{E′
i = Aji Ei} onγ (Jp), i.e.Γ ′

X(γ (s)) = 0,

s ∈ Jp. By (2.4), the existence of{E′
i} is equivalent to that ofA = [Aji ], transforming

{Ei} into {E′
i}, and such that [A−1(ΓXA + X(A))]|γ (s) = 0 for everyX. AsD is linear

on γ (Jp) (cf. Proposition 2.1), Eq. (2.10)is valid for x ∈ γ (Jp) and some matrix-valued
functionsΓk. ConsequentlyA must be a solution ofΓ ′

k(x) = 0, i.e. of

Γk(γ (s))A(γ (s))+ ∂A

∂xk

∣∣∣∣
γ (s)

= 0, s ∈ Jp. (2.15)

Now define non-degenerate matrix-valued functionsB andBi by

A(γ (s)) = B(s), ∂A

∂xα

∣∣∣∣
γ (s)

= ∂B(s)

∂sα
, α = 1, . . . , p,

∂A

∂xν

∣∣∣∣
γ (s)

= Bν(s),

ν = p + 1, . . . , n.

Substituting these equalities into(2.15), we see that it splits into

Γα(γ (s))B(s)+ ∂B(s)
∂sα

= 0, α = 1, . . . , p, (2.16)

Γν(γ (s))B(s)+ Bν(s) = 0, ν = p + 1, . . . , n. (2.17)

As these equations do not involveBα, the Bα ’s are left arbitrary by(2.15), while the
remainingBi ’s are expressed viaB(s) through (see(2.17))

Bν(s) = −Γν(γ (s))B(s), ν = p + 1, . . . , n. (2.18)

So,B(s) is the only quantity for determination. It must satisfy(2.16). If we arbitrary fix the
valueB(s0) = B0 for a fixeds0 ∈ Jp and putY (s) = B(s)B−1

0 (B is a non-degenerate as
A is such by definition), we see thatY is a solution of the initial-value problem

∂Y

∂sα

∣∣∣∣
s

= −Γα(γ (s))Y (s), α = 1, . . . , p, Y |s=s0 = 1p = [δij ]
p

i,j=1. (2.19)

By Lemma 2.1, this initial-value problem has a unique solution, given byY = Y (s, s0; −
Γ1 ◦ γ, . . . ,−Γp ◦ γ ), iff the integrability conditions(2.13)are valid.

Consequently the existence of{E′
i} (or ofA) leads to(2.13).

SUFFICIENCY.If (2.13)takes place, the general solution of(2.16)is

B(s) = Y (s, s0; −Γ1 ◦ γ, . . . ,−Γp ◦ γ )B0, (2.20)

in which s0 ∈ Jp and the non-degenerate matrixB0 are fixed. Consequently, admittingA
to be aC1 matrix-valued function, we see that inV ∩ η(Jp, J n−p) the matrix function
A(η(s, t)), s ∈ Jp, t ∈ J n−p can be expanded up to second order terms with respect to
(t − t0) as

A(η(s, t))=B(s)+ Bi(s)[xi(η(s, t))− xi(η(s, t0))] + Bij (s, t; η)[xi(η(s, t))
− xi(η(s, t0))][x

j (η(s, t))− xj (η(s, t0))] (2.21)
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for the above-defined matrix-valued functionsB,Bi , and someBij , which are such that
detB(s) �= 0,∞ andBij and their first derivatives are bounded whent → t0. (Note that in
(2.21)the terms corresponding toi, j = 1, . . . , p are equal to zero due to the definition of
{xi}.) In this case, due to(2.16)–(2.20), the general solution of(2.15)is

A(η(s, t))=

1 −

n∑
λ=p+1

Γλ(γ (s))[x
λ(η(s, t))− xλ(γ (s))]




×Y (s, s0; −Γ1 ◦ γ, . . . ,−Γp ◦ γ )B0

+
n∑

µ,ν=p+1

{Bµν(s, t; η)

× [xµ(η(s, t))− xµ(γ (s))][xν(η(s, t))− xν(γ (s))]}, (2.22)

wheres0 ∈ Jp and the non-degenerate matrixB0 are fixed andBµν , µ, ν = p + 1, . . . , n,
together with their first derivatives are bounded whent → t0. (The fact that into(2.22)
enter only sums fromp + 1 ton is a consequence fromxα(η(s, t)) = xα(γ (s)) = sα, i.e.
xα(η(s, t))− xα(η(s, t0)) = xα(η(s, t))− xα(γ (s)) = sα − sα ≡ 0,α = 1, . . . , p.)

Hence, from(2.13)follows the existence of a class of matricesA(x),x ∈ V∩η(Jp, J n−p)
such that the frames{E′

i = A
j
i Ej } are normal forD (which is supposed to be linear on

γ (Jp)). �

Thus frames{E′
i} in whichΓ ′

X = 0 exist iff (2.13)is satisfied. If(2.13)is valid, then the
normal frames{E′

i} are obtained from{Ei = ∂/∂xi} by means of linear transformations
whose matrices must have the form(2.22).

Now we are ready to consider a general smooth(C1) locally injective mappingγ : Jp →
M, i.e. such that its points of self-intersection, if any, can be separated by neighborhoods.
For anyr ∈ Jp choose a coordinate neighborhoodVγ (r) of γ (r) inM. Let there be given
a fixedC1 bijective mappingηr : Jpr × J n−p → M such thatηr(·, tr0) = γ |Jpr for some

tr0 ∈ J n−p. In the neighborhoodVγ (r) ∩ηr(J pr , J n−p) of γ (Jpr )∩Vγ (r) we introduce local
coordinates{xir} defined by

(x1
r (ηr (s, t)), . . . , x

n
r (ηr(s, t))) := (s, t) ∈ R

n,

wheres ∈ Jpr andt ∈ J n−p are such thatηr(s, t) ∈ Vγ (r).

Theorem 2.1. Let the points of self-intersection of aC1 mappingγ : Jp → M, if any, be
separable by neighborhoods. Let a derivation D along vector fields be linear onγ (Jp), i.e.
(2.10)to be valid for any X andx ∈ γ (Jp). Then a necessary and sufficient condition for
the existence in some neighborhood ofγ (Jp) of a frame{E′

i} normal for D (along every
vector field) onγ (Jp) is for everyr ∈ J in the above-defined local coordinates{xir} to be
fulfilled

[Rαβ(−Γ1 ◦ γ, . . . ,−Γp ◦ γ )](s) = 0, α, β = 1, . . . , p, (2.23)

whereΓα are calculated by means of(2.10)in {xir}, Rαβ are given by(2.14), ands ∈ Jpr is
such thatγ (s) ∈ Vγ (r).
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Proof. For anyr ∈ Jp, the restricted mappingγ |′Jpr :′ Jpr → M, where′Jpr := {s ∈
J
p
r , γ (s) ∈ Vγ (s)}, is injective (see the above definition ofJpr ) andγ |′Jpr (′J

p
r ) = γ (′Jpr )

lies in the coordinate neighborhoodVγ (r).
So, if there exists a frame{E′

i} normal forD, then, byProposition 2.2, Eq. (2.23)are
identically satisfied.

Conversely, if(2.23) are valid, then, again, byProposition 2.2for every r ∈ Jp in a
certain neighborhood′Vr of γ (′Jpr ) in Vγ (r) exists a frame{Eri } normal onγ (′Jpr ) for DX
along every vector fieldX. From the neighborhoods′Vr we can construct a neighborhood
V of γ (Jp), e.g., by puttingV = ∪′

r∈JpVr . Generally,V is sufficient to be taken as a
union of ′Vr for some, but not allr ∈ Jp. OnV we can obtain a normal frame{E′

i} by
puttingE′

i |x = Eri |x if x belongs to a single neighborhood′Vr . If x belongs to more than
one neighborhood′Vr , we can choose{E′

i |x} to be the frame{Eri |x} for some arbitrary
fixed r. �

Remark 2.2. Note that generally the frame obtained at the end of the proof ofTheorem 2.1
is not continuous in the regions containing intersections of several neighborhoods′Vr . Hence
it is, generally, no longer differentiable there. Therefore, the adjective ‘normal’ is not very
suitable in the mentioned regions. May be in such cases is better to be spoken about ‘special’
frames instead of ‘normal’ ones.

Proposition 2.3. If on the setU ⊆ M there exists frames normal on U for some derivation
along vector fields, then all of them are connected by linear transformations whose coeffi-
cients are such that the action on them of the corresponding basic vectors vanishes on U.

Proof. If {Ei} and{E′
i = A

j
i Ej } are frames normal onU , i.e. if ΓX(x) = Γ ′

X(x) = 0
for x ∈ U and every vector fieldX = XiEi , then due to(2.4), we haveX(A)|U = 0, i.e.
Ei(A)|U = 0. Conversely, ifΓX|U = 0 in {Ei} andE′

i = Aji Ej with Ei(A)|U = 0, then
from (2.4) follows Γ ′

X(x)|U = 0, i.e.{E′
i} is also a normal frame. �

Proposition 2.4. If for some derivation D along vector fields there exists a local holonomic
frame normal on the setU ⊆ M for D, then D is torsion-free on U. On the other hand, if
D is torsion-free on U and there exist smooth(C1) frames normal on U for D along every
vector field, then all of them are holonomic on U, i.e. their basic vectors commute on U.

Proof. If {E′
i} is a frame normal onU , i.e. Γ ′

X(x) = 0 for everyX andx ∈ U , then
using (2.3) and (2.6)(see also[5, Eq. (8.6)]), we find T D(E′

i , E
′
j )|U = −[E′

i , E
′
j ]|U .

Consequently{E′
i} is holonomic onU , i.e. [E′

i , E
′
j ]|U = 0, iff 0 = T D(X, Y )|U =

{X′iY ′j T D(E′
i , E

′
j )}|U for every vector fieldsX andY , which is equivalent toT D|U = 0.

Conversely, letT D|U = 0. We want to prove that any frame{E′
i = A

j
i Ej } in which

Γ ′
X = 0 is holonomic onU . The holonomicity onU means the validity of 0= [E′

i , E
′
j ]|U =

{−(A−1)lk[E
′
j (A

k
i ) − E′

i (A
k
j )]E

′
l}|U . However (seeProposition 2.1and(2.10)), the exis-

tence of{E′
i} is equivalent toΓX|U = (ΓkX

k)|U for some functionsΓk and everyX.
These two facts, combined with(2.3) and (2.6), lead to(Γk)ij = (Γj )

i
k. Using this and
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{ΓkA + (∂A/∂xk)}|U = 0 (see the proof ofProposition 2.1), we find E′
j (A

k
i )|U =

−{AljAmi (Γl)km}|U = (E′
i (A

k
j ))|U . Therefore, [E′

i , E
′
j ]|U = 0 (see above), i.e.{E′

i} is
holonomic onU . �

We shall end the general consideration of normal frames with the following result.

Proposition 2.5. Let a derivation D along vector fields be linear on a setU ⊆ M and{Ei}
be a frame onV ⊇ U . Then{Ei} is normal on U if and only if the matrix-valued functions
Γk defined via(2.10)in {Ei} for DX are such that they vanish on U, Γk|U = 0.

Proof. Let (2.10)holds in{Ei}. The frame{Ei} is normal onU if, by definition,ΓX(x) =
Γk(x)X

k(x) = 0 in {Ei} for x ∈ U . SinceX is arbitrary, the last equation is equivalent to
Γk(x) = 0, x ∈ U . �

Notice, if, by some reason, the vector fields are restricted somehow, e.g. ifU is a sub-
manifold and they are chosen to be tangent to it, thenProposition 2.5may not hold (unless
U is (dimM)-dimensional in this example).

Consider now some special cases of the above general results.
First of all, we observe that the condition(2.13) is identically valid ifp = 0,1, which

means that in the zero- and one-dimensional cases normal frames always exist. So, com-
biningTheorem 2.1andProposition 2.1, we get the following corollary.

Corollary 2.1. Let U = {x0}, γ (J ), wherex0 ∈ M is fixed andγ : J → M, J being
real interval, is a locally injective path(i.e. path with separable by neighborhoods points
of self-intersection, if any). Frames normal on U for a derivation D exist if and only if D is
linear on U.

If X|x0 �= 0, one can always findconstantmatricesΓk, such that in a fixed frame{Ei} is
valid

ΓX|x0 = ΓkXk|x0, (2.24)

which means thatany derivation along X is linear at any fixed pointx0, providedX|x0 �= 0.
Obviously,Eq. (2.24)holds forX|x0 = 0 iff ΓX|x0 = 0 which is equivalent toDX(T )|x0 = 0
for anyC1 tensor fieldT defined on a neighborhood ofx0. Therefore, in the zero-dimensional
case, the following stronger version ofCorollary 2.1is valid.

Corollary 2.2. Let x0 ∈ M be fixed, X be a vector field and D be a derivation along
vector fields. IfX|x0 �= 0, then frames normal forDX at x0 always exist. IfX|x0 = 0, then
frames normal forDX at x0 exist iffDX(T )|x0 = 0 for anyC1 tensor field T defined on a
neighborhood ofx0, in which case any frame is normal forDX.

Of course, the (un)uniqueness and holonomicity of the normal frames in the zero-
and one-dimensional case, if any, is described viaPropositions 2.3 and 2.4. These
results andCorollaries 2.1 and 2.2were independently proved in[2,3] for p = 0,1,
respectively.
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Call now attention on the other limiting case,p = dimM, whenU is an open neighbor-
hood inM, possibly coinciding with the whole manifoldM. In this case, the linearity of
D onU means thatDX coincides onU with some covariant derivative∇X alongX and,
consequently, the r.h.s. of(2.14)represents nothing else than the components of the curva-
ture tensor of∇ atγ (s) in a coordinate (holonomic) frame. Thus, combiningTheorem 2.1
andProposition 2.1, we obtain the following result, which will be proved independently
because of its importance.

Corollary 2.3. LetU ⊆ M be a neighborhood and D be a derivation along vector fields.
Frames normal for D on U exist if and only ifDX coincides on U with some flat linear
connection∇X along any vector field X.

Proof. Let us fix a frame{Ei} inU . The existence of{E′
m}withΓ ′

X = 0, due to(2.4), implies
ΓX = −(X(A))A−1, i.e.(ΓX)ij = −[Xk(Ek(Aim))](A

−1)mj which, by(2.5), means thatD

coincides onU with a linear connection∇ with local coefficientsΓ ijk = −(Ek(Aim))(A−1)mj .

PuttingΓX = −(X(A))A−1 and usingX(A−1) = −A−1(X(A))A−1, we getRD = R∇ =
0. Conversely, letD coincides onU with a flat linear connection∇. Let {E0

i } be a basis
at x0 ∈ U . Define the vector fieldE′

i so that its valueE′
i |x at x ∈ U is obtained fromE0

i

by the parallel translation (transport), generated by∇ [9,12], from x0 to x. As ∇ is aflat
linear connection,E′

i |x does not depend on the transportation path and the vector fields
{E′
i} are linearly independent[9,11,13], i.e. they form a frame onU . It is holonomic iff∇

is torsion-free onU [11,13]. By definition of a parallel translation, the vectors of the frame
{E′
i} satisfy∇XE′

i = 0, which, when combined with(2.3), impliesΓ ′
X = 0. �

The main consequence ofProposition 2.3is that the (flat) linear connections are the
only derivations for which normal frames exist in neighborhoods. These frames, if any,
are holonomic iff the derivation is torsion-free[11,13]. From(2.4), one finds that they are
connected by linear transformations with constant coefficients. ByCorollary 2.3, a necessary
condition for the existence of the considered special frames for a derivationD is its flatness,
i.e.RD = 0.

2.3. Normal frames for derivations along a fixed vector field

A derivationDX is linear onU ⊆ M along afixedvector fieldX if (2.10) holds for
x ∈ U and the givenX. In this sense, evidently,any derivation along a fixed vector field is
linear on every setand, consequently, on the whole manifoldM; moreover, generally, for a
fixedX, infinitely manyΓk, for which(2.10)holds, can be found. Namely this is the cause
due to which the analogue ofProposition 2.1for such derivations, which is evidently true,
is absolutely trivial and does even need not to be formulated.

The existence of normal frames, in which the components ofDX, with afixedX, vanish
on some setU ⊆ M, significantly differs from the same problem forDX with aneveryX
(seeSection 2.2). In fact, if {E′

i = Aji Ej }, {Ei} being a fixed frame onU , is a frame normal

onU , i.e.Γ ′
X|U = 0, then, due to(2.4), its existence is equivalent to the one ofA := [Aji ]

for which (ΓXA + X(A))|U = 0 for thegivenX. As X is fixed, the values ofA at two
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different points, sayx, y ∈ U , are connected through the last equation if and only ifx and
y lie on one and the same integral curve ofX, the part of which betweenx andy belongs
entirely toU . Hence, ifγ : J → M, J being anR-interval, is (a part of) an integral curve
of X, i.e. atγ (s), s ∈ J the tangent toγ vector fieldγ̇ is γ̇ (s) := X|γ (s), then alongγ
the equation(ΓXA + X(A))|U = 0 reduces to dA/ds|γ (s) = γ̇ (A)|s = (X(A))|γ (s) =
−ΓX(γ (s))A(γ (s)). Applying Lemma 2.1for p = 1, we see that the general solution of
this equation is

A(s; γ ) = Y (s, s0; −ΓX ◦ γ )B(γ ), (2.25)

wheres0 ∈ J is fixed,Y = Y (s, s0;Z), with Z being aC1 matrix function ofs, is the
unique solution of the initial-value problem (see[14, Ch. IV, Section 1])

dY

ds
= ZY, Y |s=s0 = 1, (2.26)

and the non-degenerate matrixB(γ )may depend only onγ , but not ons. (Note that(2.26)
is a special case of(2.11) for p = 1 and byLemma 2.1it has always a unique solution
becauseR11(Z1) ≡ 0, due to(2.12)with p = 1.)

From the above considerations, the next propositions follow.

Proposition 2.6. There exist frames normal for any derivation along a fixed vector field on
every setU ⊆ M.

Proposition 2.7. The frames normal on a setU ⊆ M for some derivation along a fixed
vector field X are connected by linear transformations whose matrices are such that the
action of X on them vanishes on U.

Proof. If {Ei} and{E′
i = Aji Ej } are such thatΓ ′

X|U = ΓX|U = 0, then, due to(2.4), we
haveX(A)|U = 0. On the other hand, ifΓX|U = 0 andX(A)|U = 0, then, by(2.4), is
fulfilled Γ ′

X|U = 0, i.e.{E′
i} is normal. �

The problem for the holonomicity of frames normal for a derivationDX along a fixed
vector fieldX is, generally, ill-posed. In fact, on one hand, the concept of torsion for such a
derivation is not defined (see(2.6), whereX andY are arbitrary vector fields) and, on other
hand, to talk about holonomicity of a frame it is necessary it to be defined on a neighborhood
in a smooth way, while the frames normal forDX onU ⊆ M are, generally, such only along
the integral paths ofX lying in U . An exception of this conclusion is the caseU = γ (J )
with γ : J → M being an integral path ofX. In it there are holonomic as well anholonomic
frames definedon a neighborhood ofγ (J ) andnormal onγ (J ) (seeLemma 2.2).

2.4. Normal frames for derivations along paths

Let γ : J → M, J being anR-interval, be aC1 injective path andX be aC1 vector field
defined on a neighborhood ofγ (J ) in such a way that onγ (J ) it reduces to the tangent
vector fieldγ̇ , i.e.X|γ (s) = γ̇ (s), s ∈ J . We call the restriction onγ (J ) of a derivation
DX alongX derivation alongγ and denote it byDγ . Of course,Dγ generally depends
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on the values ofX outsideγ (J ), but, as this dependence is insignificant for the following,
it will not be written explicitly. So, ifT is aC1 tensor field in a neighborhood ofγ (J ),
then1

(Dγ T )(γ (s)) := Dγs T := (DXT )|γ (s), X|γ (s) = γ̇ (s). (2.27)

If D is a derivation along vector fieldslinear onγ (J ), it is easily seen (see(2.1) and (2.10))
thatDγs T depends only on the values ofT |x for x ∈ γ (J ), but not on the ones forx /∈ γ (J ).
The operatorDγ is a generalization of the usual covariant differentiation along curves (see
[11,15,16]).

When restricted toγ (J ), the components ofDX will be called components ofDγ . Since
we can regardX in (2.27)as a fixed vector field, the next proposition is a consequence of
Proposition 2.6, but we shall present bellow its independent proof too.

Proposition 2.8. Along anyC1 injective pathγ : J → M there exists a frame{E′
i} in

which the components of a given derivationDγ alongγ vanish onγ (J ).

Proof. Let us fix a frame{Ei} in a neighborhood ofγ (J ). We have to prove the existence of
a transformation{Ei} → {E′

j = AijEi} such thatΓ ′
X|γ (J ) = 0. By (2.4), this is equivalent

to the existence of a matrix functionA = [Aij ] satisfying alongγ the equation(A−1(ΓXA+
X(A)))|γ (J ) = 0, s ∈ J , or

γ̇ (A)|γ (s) ≡ dA(γ (s))

ds
= −ΓX(γ (s))A(γ (s)) (2.28)

asX|γ (s) = γ̇ (s). The general solution of this equation with respect toA is

A(s; γ ) = Y (s, s0; −ΓX ◦ γ )B(γ ), (2.29)

whereY is the unique solution of the initial-value problem(2.11)with p = 1, s0 ∈ J is
fixed, andB(γ ) is a non-degenerate matrix function ofγ .

Let A be any matrix function with the propertyA(x)|x=γ (s) = A(s; γ ) for somes0
andB (e.g., using the notation of the proof ofProposition 2.2with p = 1, in any co-
ordinate neighborhood in whichγ is without self-intersections, we can putA(η(s, t)) =
Y (s, s0; −ΓX ◦ γ )B(s0, t0, t; γ ) for a fixed non-degenerate matrix functionB.) Then it is
easily seen thatA carries out the needed transformation. Hence, the frame{E′

j = AijEi} is
the one looked for. �

The frames provided byProposition 2.8will be callednormalfor Dγ (alongγ ).

Proposition 2.9. The frames normal along an injective pathγ : J → M for Dγ are
connected by linear transformations whose coefficients onγ (J ) are constant or may depend
only onγ .

1 Here and below the conditionγ to be injective is essential one as otherwise the mappingγ (s) 
→ γ̇ (s) is not
a (single-valued) vector field at the points of self-intersection ofγ . The theory below can be generalized for an
arbitrary, injective or not such, pathγ if by X(f )|γ (s), f being aC1 function, one understands df (γ (s))/ds.
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Proof. If {Ei}and{E′
i}are normal frames, thenΓX(γ (s)) = Γ ′

X(γ (s)) = 0,X|γ (s) = γ̇ (s).
So, from(2.4)follows γ̇ (A)|γ (s) = dA(γ (s))/ds = 0, i.e.A(γ (s)) is a constant or depends
only on the mappingγ . �

FromPropositions 2.8 and 2.9, we infer that the requirement for the components ofDγ to
vanish along a pathγ determines the corresponding normal frames with some arbitrariness
only onγ (J ) and leaves them absolutely arbitrary outside the setγ (J ). For this reason, we
speak about frames normal forDγ defined onlyonγ (J ).

Proposition 2.10. Let the frame{E′
i} defined onγ (J ) be normal for some derivationDγ

along aC1 injective pathγ : J → M. Let U be a coordinate neighborhood. Then there is
a neighborhood ofU ∩ (γ (J )) in U in which{E′

i} can be extended to a coordinate frame,
i.e. in this neighborhood there exist local coordinates{yi} such thatE′

i |γ (s) = ∂/∂yi |γ (s).

Remark 2.3. This proposition means that locally any frame normal forDγ onγ (J ) can be
thought of as (extended to) a coordinate, and hence holonomic, one (seeProposition 2.9).
In particular, ifγ is contained in only one coordinate neighborhood and is injective, as it
is supposed, then every frame normal onγ (J ) for Dγ can be extended to a holonomic one
(see the proof ofProposition 2.9).

Remark 2.4. This result is independent of the torsion of the derivationD which induces
Dγ . The cause for this is the conditionX|γ (s) = γ̇ (s) in (2.27).

Proof. The proposition is a trivial corollary from the proof ofProposition 2.8and the
following lemma. �

Lemma 2.2. Let the pathγ : J → M be without self-intersections and such thatγ (J )
is contained in some coordinate neighborhoodU , i.e. γ (J ) ⊂ U . Let {E′

i} be a smooth
frame defined onγ (J ), i.e.E′

i |γ (s) depends smoothly ons. Then there is a neighborhood of
γ (J ) in U in which coordinates{yi} exist such thatE′

i |γ (s) = ∂/∂yi |γ (s), i.e. {E′
i} can be

extended in it to a coordinate frame.

Proof. Let η : J × V → U , V := J × · · · × J (n − 1 times), be aC1 one-to-one onto
mapping such thatη(·, t0) = γ for some fixedt0 ∈ V , i.e.η(s, t0) = γ (s), s ∈ J (cf. the
proof ofProposition 2.2). In the neighborhoodη(J, V ) ⊂ U we introduce coordinates{xi}
by putting(x1(η(s, t)), . . . , xn(η(s, t))) = (s, t), s ∈ J , t ∈ V . Let the non-degenerate
matrix [Aij (s; γ )] defines the expansion of{E′

i} with respect to{∂/∂xi}, i.e.

E′
i |γ (s) = Aji (s; γ )

(
∂

∂xj

∣∣∣∣
γ (s)

)
. (2.30)

Define the functionsyi : η(J, V )→ R by

yi(η(s, t)) := xi0 +
∫ s

s0

(A−1)i1(u; γ )du+ (A−1)ij (s; γ )[xj (η(s, t))− xj (γ (s))]

+ f ijk(s, t; γ )[xj (η(s, t))− xj (γ (s))][xk(η(s, t))− xk(γ (s))], (2.31)
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wheres0 ∈ J andx0 ∈ η(J, V ) are fixed and the functionsf ijk together with their first
derivatives are bounded whent → t0. Then, because ofη(·, t0) = γ , we find

∂yi

∂xj

∣∣∣∣
γ (s)

= ∂yi

∂xj

∣∣∣∣
η(s,t0)

= (A−1)ij (s; γ ). (2.32)

As det[Aij (s; γ )] �= 0,∞, from (2.32)it follows that the transformation{xi} → {yi} is a

diffeomorphism on some neighborhood ofγ (J ) lying in U . So, in this neighborhood{yi}
are local coordinates. The coordinate basic vectors onγ (J ) corresponding to them are (see
(2.30) and (2.32))

∂

∂yj

∣∣∣∣
γ (s)

=
(
∂xi

∂yj

∣∣∣∣
γ (s)

)
∂

∂xi

∣∣∣∣
γ (s)

= Aij (s; γ )
∂

∂xi

∣∣∣∣
γ (s)

= E′
j |γ (s).

Hence{yi} are the local coordinates we are looking for. �

Lemma 2.2has also a separate meaning: according to it any locally smooth frame defined
onγ (J ) can locally be extended to aholonomicframein a neighborhood ofγ (J ). Evidently,
such an extension can be done in an anholonomic way too. Consequently, the holonomicity
problem for a frame defined only onγ (J ) depends on the way this frame is extended in a
neighborhood ofγ (J ).

2.5. Normal frames for linear connections on a manifold

As it was said inSection 2.2, the linear connections (covariant derivatives) on a manifold
M are derivations of the tensor algebra over it which are linear on any subsetU ⊆ M. For
a linear connection∇ the matricesΓk(x) in (2.10)are nothing else but the ones formed
from the local coefficientsΓ ijk(x) of ∇ in a frame{Ei} (see(2.5)), Γk(x) = [Γ ijk(x)]

dimM
i,j=1 .

Therefore, according toProposition 2.5, a frame is normal for∇ onU iff in it the coefficients
of ∇ vanish onU . This simple conclusion completely agrees with the definition of a frame
normal for a linear connection given in the literature[1,11,12,16,17]as a one in which the
connection’s coefficients vanish (on some set).

Because of the importance of the linear connections on a manifold in geometry and
theoretical physics, below we present a partial list of some results regarding frames normal
for them.

Corollary 2.4. Let the points of self-intersection of theC1 mappingγ : Jp → M, if any,
be separable by neighborhoods,∇ be a linear connection onM with local coefficientsΓ ijk
(in a frame{Ei}) andΓk := [Γ ijk]ni,j=1. Then in a neighborhood ofγ (Jp) there exists a
frame{E′

i} normal onγ (Jp) for ∇, i.e.Γ ′
k |γ (Jp) = 0, iff for everyr ∈ Jp in the coordinates

{xir} (defined beforeTheorem 2.1) is satisfied(2.13)in whichΓα, α = 1, . . . , p are part of
the components of∇ in {xir} ands ∈ Jp is such thatγ (s) ∈ Vγ (r).

Proof. For linear connections,Eq. (2.10)is valid for everyX in any frame. So, if in a frame
{E′
i} is fulfilled Γ ′

X|U = 0 forU ⊆ M, we have in itΓ ′
k |U = 0 (see(2.4)) and vice versa,
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if in a frame{E′
i} is validΓ ′

k |U = 0, thenΓX|U = 0 for everyX. Combining this fact with
Theorem 2.1, we get the required result. �

Corollary 2.5. If on a setU ⊆ M, there exist frames normal for some linear connection
onU , then these frames are connected by linear transformations whose matrices are such
that the action of the corresponding basic vectors on them vanishes onU .

Proof. The result follows fromProposition 2.3and the proof ofCorollary 2.4. �

Corollary 2.6. Let there exist locally smooth frames normal onU for some linear con-
nection on a neighborhood of some setU ⊆ M. Then one(and hence any) such frame is
holonomic onU iff the connection is torsion-free onU .

Proof. The statement follows from(2.10)(or (2.5)) andProposition 2.4. �

Corollary 2.7. For any linear connection∇, there exist frames along every pathγ : J →
M in which the coefficients of∇ vanish onγ (J ). These normal frames are connected with
one another in the way described inProposition 2.3.

Proof. This result is a consequence from(2.5), Propositions 2.1 and 2.3and their proofs;
in the former of the proofs a frame with the needed property is explicitly constructed.�

Corollary 2.8. One, and hence any, frame for a linear connection∇, which is smooth on
γ (J ) and normal along a pathγ : J → M, is holonomic if and only if∇ is torsion-free on
γ (J ).

Proof. The statement follows from(2.5)andPropositions 2.1 and 2.4. �

Corollary 2.9. Let ∇ be a torsion-free linear connection and the pathγ : J → M be
without self-intersections and lying in only one coordinate neighborhood. Then for∇ there
exist coordinates normal onγ (J ), or, equivalently, locally holonomic normal frames.

Proof. The result follows fromCorollaries 2.7 and 2.8. �

Corollary 2.10. LetD/ds|γ := ∇γ̇ be the covariant derivative associated with a linear
connection∇ along someC1 injective pathγ : J → M. Then onγ (J ) there exist frames
normal for∇γ̇ . They are obtained from one another by linear transformations whose coef-
ficients are constant or depend only onγ . If γ (J ) lies in a single coordinate neighborhood,
then in some neighborhood ofγ (J ) all of these normal frames can be extended in a holo-
nomic way.

Proof. The statement follows fromPropositions 2.8–2.10. �
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3. Normal frames for linear connections in vector bundles and the equivalence
principle

The main purpose of the present, third, part of our work is problems similar to those
in Section 2to be investigated for linear connections in finite-dimensional vector bundles.
It will be demonstrated that the results obtained inSection 2can be almost automatically
reformulated to solve these problems. Besides, some speculation concerning the equivalence
principle in classical gauge theories will be presented.

3.1. Linear connections in vector bundles

Different equivalent definitions of a (linear) connection in vector bundles are known and
in current usage[9,18–20]. The most suitable one for our purposes is given in[21, p. 223]
(see also[18, Theorem 2.52]).

Suppose(E, π,M),E andM being finite-dimensionalC∞ manifolds, beC∞
K-vector

bundle[18] with bundle spaceE, baseM, and projectionπ : E → M. HereK stands for
the fieldR of real numbers orC of complex ones. Let Seck(E, π,M), k = 0,1,2, . . . be
the set (in fact the module) ofCk sections of(E, π,M) andX(M) the one of vector fields
onM.

Definition 3.1. Let V,W ∈ X(M), σ, τ ∈ Sec1(E, π,M), andf : M → K be aC∞
function. A mapping∇ : X(M)× Sec1(E, π,M)→ Sec0(E, π,M), ∇ : (V , σ ) 
→ ∇V σ ,
is called a (linear) connection in(E, π,M) if

∇V+Wσ = ∇V σ + ∇Wσ, (3.1a)

∇fVσ = f∇V σ, (3.1b)

∇V (σ + τ) = ∇V (σ )+ ∇V (τ ), (3.1c)

∇V (f σ) = V (f ) · σ + f · ∇V (σ ). (3.1d)

Remark 3.1. Rigorously speaking,∇, as defined byDefinition 3.1, is a covariant deri-
vative operator in(E, π,M)—see [18, Definition 2.51]—but, as a consequence of
[18, Theorem 2.52], this cannot lead to some ambiguities.

Remark 3.2. SinceV (a) = 0 for everya ∈ K (considered as a constant functionM →
{a}), the mapping∇ : (V , σ ) 
→ ∇V σ is K-linear with respect to both its arguments.

Let {ei : i = 1, . . . ,dimπ−1(x)}, x ∈ M and{Eµ : µ = 1, . . . ,dimM} be frames over
an open setU ⊆ M in, respectively(E, π,M) and the tangent bundle(T (M), πT ,M)
over M, i.e. for everyx ∈ U , the set{ei |x} forms a basis of the fiberπ−1(x) and
{Eµ|x} is a basis of the spaceTx(M) = π−1

T (x) tangent toM at x. Let us writeσ =
σ iei andV = V µEµ, where here and henceforth the Latin (resp. Greek) indices run
from 1 to the dimension of(E, π,M) (resp.M), the Einstein summation convention is
assumed, andσ i, V µ : U → K are someC1 functions. Then, fromDefinition 3.1,
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one gets

∇V σ = V µ(Eµ(σ i)+ Γ ijµσ j )ei, (3.2)

whereΓ ijµ : U → K, calledcoefficientsof ∇, are given by

∇Eµej =: Γ ijµei . (3.3)

Evidently, by virtue of(3.2), the knowledge of{Γ ijµ} in a pair of frames({ei}, {Eµ}) overU

is equivalent to the one of∇ as any transformation({ei}, {Eµ}) 
→ ({e′i = Aji ej }, {E′
µ =

BνµEν}) with non-degenerate matrix-valued functionsA = [Aji ] and B = [Bνµ] on U

impliesΓ ijµ 
→ Γ i
′
jµ with

Γ ′i
jµ =

dimM∑
ν=1

dimπ−1(x)∑
k,l=1

Bνµ(A
−1)ikA

l
jΓ
k
lν +

dimM∑
ν=1

dimπ−1(x)∑
k=1

Bνµ(A
−1)ikEν(A

k
j ) (3.4)

which in a matrix form reads

Γ ′
µ = BνµA−1ΓνA+ A−1E′

µ(A) = BνµA−1(ΓνA+ Eν(A)), (3.5)

whereΓµ := [Γ ijµ]dimπ−1(x)
i,j=1 , x ∈ M, andΓ ′

µ := [Γ ′
jµ
i ]dimπ−1(x)
i,j=1 .

The interpretation of the coefficientsΓ ijµ as components of a 1-form (more precisely, of
endomorphisms ofE-valued 1-form or section of the endomorphism bundle of(E, π,M),
or of Lie algebra-valued 1-form in a case of principle bundle) is well known and considered
at length in the literature[10,18,20–22], but it will not be needed directly in the present
work.

3.2. Linear transports along paths in vector bundles

To begin with, we recall some definitions and results from the paper[8].2 Below we
denote by PLiftk(E, π,M) the set of liftings ofCk paths fromM toE such that the lifted
paths are of classCk, k = 0,1, . . . . Let γ : J → M, J being real interval, be a path inM.

Definition 3.2. A linear transport along paths in vector bundle(E, π,M) is a mappingL
assigning to every pathγ a mappingLγ , transport alongγ , such thatLγ : (s, t) 
→ L

γ
s→t

where the mapping

L
γ
s→t : π−1(γ (s))→ π−1(γ (t)) , s, t ∈ J, (3.6)

calledtransport alongγ from s to t , has the properties:

L
γ
s→t ◦ Lγr→s = Lγr→t , r, s, t ∈ J, (3.7)

L
γ
s→s = idπ−1(γ (s)), s ∈ J, (3.8)

2 In [8] is assumedK = C, but this choice is insignificant.
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L
γ
s→t (λu+ µv) = λLγs→t u+ µLγs→t v, λ, µ ∈ K, u, v ∈ π−1(γ (s)), (3.9)

where◦ denotes composition of maps and idX is the identity map of a setX.

Definition 3.3. A derivation along paths in(E, π,M) or aderivation of liftings of paths
in (E, π,M) is a mapping

D : PLift1(E, π,M)→ PLift0(E, π,M) (3.10a)

which isK-linear,

D(aλ+ bµ) = aD(λ)+ bD(µ) (3.11a)

for a, b ∈ K andλ,µ ∈ PLift1(E, π,M), and the mapping

D
γ
s : PLift1(E, π,M)→ π−1(γ (s)), (3.10b)

defined viaDγs (λ) := ((D(λ))(γ ))(s) = (Dλ)γ (s)and calledderivation alongγ : J → M

at s ∈ J , satisfies the ‘Leibnitz rule’:

D
γ
s (f λ) = dfγ (s)

ds
λγ (s)+ fγ (s)Dγs (λ) (3.11b)

for every

f ∈ PF1(M) := {ϕ|ϕ : γ 
→ ϕγ , γ : J → M,ϕγ : J → K being of classC1}.
The mapping

Dγ : PLift1(E, π,M)→ P(π−1(γ (J ))) := {paths inπ−1(γ (J ))}, (3.10c)

defined byDγ (λ) := (D(λ))|γ = (Dλ)γ , is calledderivation alongγ .

If γ : J → M is a path inM and{ei(s; γ )} is a basis inπ−1(γ (s)),3 in the frame{ei}
over γ (J ) the components(matrix elements)Lij : U → K of a linear transportL along
paths and the ones of a derivationD along paths in vector bundle(E, π,M) are defined
through, respectively,

L
γ
s→t (ei(s; γ )) =: Lji (t, s; γ )ej (t; γ ) , s, t ∈ J, (3.12)

D
γ
s êj =: Γ ij (s; γ )ei(s; γ ), s ∈ J, (3.13)

whereêi : γ 
→ ei(·; γ ) is a lifting of γ generated byei .
It is a simple exercise to verify that the components ofL andD uniquely define (locally)

their action onu = uiei(s; γ ) andλ ∈ PLift1(E, π,M), λ : γ 
→ λγ = λiγ êi , according to

L
γ
s→t u =: Lij (t, s; γ )uj ei(t; γ ), (3.14)

D
γ
s λ =:

(
dλiγ (s)

ds
+ Γ ij (s; γ )λjγ (s)

)
ei(s; γ ) (3.15)

3 If there ares1, s2 ∈ J such thatγ (s1) = γ (s2) := y, the vectorsei (s1; γ ) andei (s2; γ ) need not coincide. So,
if this is the case, the bases{ei (s1; γ )} and{ei (s2; γ )} in π−1(y) may turn to be different.
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and that a change{ei(s; γ )} 
→ {e′i (s; γ ) = A
j
i (s; γ )ej (s; γ )}, with a non-degenerate

matrix-valued functionA(s; γ ) := [Aji (s; γ )], implies the transformation

L(t, s; γ ) := [Lji (t, s; γ )] 
→ L′(t, s; γ ) = A−1(t; γ )L(t, s; γ )A(s; γ ), (3.16)

�(s; γ ) := [Γ ij (s; γ )] 
→ �′(s; γ )

= A−1(s; γ )�(s; γ )A(s; γ )+ A−1(s; γ )dA(s; γ )
ds

. (3.17)

A crucial role further will be played by thecoefficientsΓ ij (s; γ ) in a frame{ei} of linear
transportL,

Γ ij (s; γ ) :=
∂Lij (s, t; γ )

∂t

∣∣∣∣∣
t=s

= −
∂Lij (s, t; γ )

∂s

∣∣∣∣∣
t=s
. (3.18)

The usage of the same notation for thecoefficientsof a transportL andcomponentsof
derivationD along paths is not accidental and finds its reason in the next fundamental
result[8, Section 2]. Call a transportL differentiable of classCk, k = 0,1, . . . if its matrix
L(t, s; γ ) hasCk dependence ont (and hence ons—see[8, Section 2]). EveryC1 linear
transportL along paths generates a derivationD along paths via

D
γ
s (λ) := lim

ε→0

{
1

ε
[Lγs+ε→sλγ (s + ε)− λγ (s)]

}
(3.19)

for every liftingλ ∈ PLift1(E, π,M) with λ : γ 
→ λγ and conversely, for any deriva-
tion D along paths there exists a unique linear transport along paths generating it via
(3.19). Besides, ifL andD are connected via(3.19), the coefficients ofL coincide with
the components ofD. In short, there is a bijective correspondence between linear trans-
ports and derivations along paths given locally through the equality of their coefficients and
components, respectively.

More details and results on the above items can be found in[8].

3.3. Links between linear connections and linear transports

Supposeγ : J → M is aC1 path andγ̇ (s), s ∈ J , is the vector tangent toγ at γ (s)
(more precisely, ats). Let ∇ andD be, respectively, a linear connection and derivation
along paths in vector bundle(E, π,M) and in a pair of frames({ei}, {Eµ}) over some open
set inM the coefficients of∇ and the components ofD beΓ ijµ andΓ ij , respectively, i.e.

∇Eµ = Γ jiµej andDγs êi = Γ ji ej (γ (s)) with êi : γ 
→ êi |γ : s 
→ ei(γ (s)) being lifting of

paths generated byei . If σ = σ iei ∈ Sec1(E, π,M) andσ̂ ∈ PLift(E, π,M) is given via
σ̂ : γ 
→ σ̂γ := σ ◦ γ , then(3.15)implies

D
γ
s σ̂ =

(
dσ i(γ (s))

ds
+ Γ ij (s; γ )σ j (γ (s))

)
ei(γ (s)),
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while if γ (s) is not a self-intersection point forγ , Eq. (3.2)leads to

(∇γ̇ σ )|γ (s) =
(

dσ i(γ (s))

ds
+ Γ ijµ(γ (s))σ j (γ (s))γ̇ µ(s)

)
ei(γ (s)).

Obviously, we have

D
γ
s σ̂ = (∇γ̇ σ )|γ (s) (3.20)

for everyσ iff

Γ ij (s; γ ) = Γ ijµ(γ (s))γ̇ µ(s), (3.21)

which in matrix form reads

�(s; γ ) = Γµ(γ (s))γ̇ µ(s). (3.21)

A simple algebraic calculation shows that this equality is invariant under changes of the
frames{ei} in (E, π,M) and {Eµ} in (T (M), πT ,M). Besides, if(3.21) holds, then�
transforms according to(3.17)iff Γµ transforms according to(3.5).

The above considerations are a hint that the linear connections should, and in fact can, be
described in terms of derivations or, equivalently, linear transports along paths; the second
description being more relevant if one is interested in the parallel transports generated by
connections.

Theorem 3.1. If ∇ is a linear connection, then there exists a derivationD along paths
such that(3.20)holds for everyC1 pathγ : J → M and everys ∈ J for whichγ (s) is
not self-intersection point forγ .4 The matrix of the components ofD is given by(3.21)for
everyC1 pathγ : J → M ands ∈ J such thatγ (s) is not a self-intersection point forγ .
Conversely, given a derivationD along path whose matrix along anyC1 pathγ : J → M

has the form(3.21)for some matrix-valued functionsΓµ, there is a unique linear connection
∇ whose matrices of coefficients are exactlyΓµ and for which, consequently(3.20)is valid
at the not self-intersection points ofγ .

Proof. NECESSITY. IfΓµ are the matrices of the coefficients of∇ in some pair of frames
({ei}, {Eµ}), define the matrix� of the components ofD via (3.21)for anyγ : J → M.
SUFFICIENCY. GivenD for which the decomposition(3.21)holds in({ei}, {Eµ}) for any
γ . It is trivial to verity thatΓµ transform according to(3.5)and, consequently, they are the
matrices of the coefficients of a linear connection∇ for which, evidently,(3.20)holds. �

A trivial consequence of the above theorem is the next important result.

Corollary 3.1. There is a bijective correspondence between the set of linear connections
in a vector bundle and the one of derivations along paths in it whose components’ matrices

4 In particular,γ can be injective ands arbitrary. If we restrict the considerations to injective paths, the derivation
D is unique. The essential point here is that at the self-intersection points ofγ , if any, the mappinġγ : γ (s) 
→ γ̇ (s)

is generally multiple-valued and, consequently, it is not a vector field (alongγ ); as a result(∇γ̇ σ )|γ (s) at them
becomes also multiple-valued.
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admit (locally) the decomposition(3.21). Locally, along aC1 pathγ and pair of frames
({ei}, {Eµ}) along it, it is given by(3.21) in which � and Γµ are the matrices of the
components of a derivation along paths and of the coefficients of a linear connection,
respectively.

Let us now look on the preceding material from the view-point of linear transports along
paths and parallel transports generated by linear connections.

Recall (see, e.g.[18, Chapter 2]), a sectionσ ∈ Sec1(E, π,M) is parallel alongC1 path
γ : J → M with respect to a linear connection∇ if (∇γ̇ σ )|γ (s) = 0, s ∈ J .5 Theparallel
transport alongaC1 pathα : [a, b] → M, a, b ∈ R, a ≤ b, generated by∇ is a mapping

Pα : π−1(α(a))→ π−1(α(b))

such thatPα(u0) := u(b) for every elementu0 ∈ π−1(α(a)), whereu ∈ Sec1(E, π,
M)|α([a,b]) is the unique solution of the initial-value problem

∇α̇u = 0, u(a) = u0. (3.23)

Theparallel transportP generated by (assigned to, corresponding to) a linear connection∇
is a mapping assigning to anyα : [a, b] → M the parallel transportPα alongα generated
by ∇.

LetD be the derivation along paths corresponding to∇ according toCorollary 3.1. Then
(3.20)holds forγ = α, so(3.23)is tantamount to

Dαs û = 0, u(a) = u0, (3.24)

whereû : α 
→ ū ◦ α with ū ∈ Sec1(E, π,M) such that̄u|α([a,b]) = u. From here and the
results of[8, Section 2]immediately follows that the liftinĝu is generated by the unique
linear transportP along paths corresponding toD,

û : α 
→ ûα := P̄
α

a,u0
, P̄

α

a,u0
: s 
→ P̄

α

a,u0
(s) := Pαa→su0, s ∈ [a, b]. (3.25)

Therefore,Pα(uo) := u(b) = ū(α(b)) = ûα(b) = Pαa→bu0. Since this is valid for all
u0 ∈ π−1(α(a)), we have

Pα = Pαa→b. (3.26)

Theorem 3.2. The parallel transportP generated by a linear connection∇ in a vector
bundle coincides, in a sense of(3.26), with the unique linear transportP along paths in
this bundle corresponding to the derivationD along paths defined, via Corollary 3.1, by the
connection. Conversely, if P is a linear transport along paths whose coefficients’ matrix
admits the representation(3.21), then for everys, t ∈ [a, b]

Pαs→t =
{
Pα|[s,t ] for s ≤ t,
(P α|[t,s])−1 for s ≥ t, (3.27)

5 If γ is not injective, here and henceforth(∇γ̇ σ )|γ (s) should be replaced byDγs σ̂ , σ̂ : γ 
→ σ ◦ γ , whereD is
the derivation along paths corresponding to∇ via Corollary 3.1.
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whereP is the parallel transport along paths generated by the unique linear connection∇
corresponding to the derivationD along paths defined byP .

Proof. The first part of the assertion was proved above while deriving(3.26). The second
part is simply the inversion of all logical links in the first one, in particular(3.27) is the
solution of(3.26)with respect toP. �

Remark 3.3. The (local) condition(3.21)plays a crucial role in the proofs of all of the above
results. It has also an invariant version in terms of linear transports: for a given transportL it

is “almost” equivalent to the conditionsLγ ◦ϕ
s→t = Lγϕ(s)→ϕ(t), s, t ∈ J ′′, andLγ |J ′

s→t = Lγs→t ,
s, t ∈ J ′, whereγ : J → M, ϕ : J ′′ → J is orientation-preserving diffeomorphism, and
J ′ ⊆ J is a subinterval. This means that, in some sense, a linear transportL is a parallel
one (generated by a linear connection) iff it satisfies these conditions. These statements
will be completely rigorous if the transports involved satisfy some smoothness conditions;
for details, see[23]. A revised and expanded study of the links between linear and parallel
transports will be given elsewhere.

The transportP along paths corresponding according toTheorem 3.2to a parallel transport
P or a linear connection∇ will be calledparallel transport along paths.

Corollary 3.2. The local coefficients’ matrixΓ of a parallel transport along paths and
the coefficients’ matricesΓµ of the generating it(or generated by it) linear connection are
connected via(3.21)for everyC1 pathγ : J → M.

Proof. SeeTheorem 3.2. �

3.4. Normal frames for linear connections

In Section 2, problems of existence, uniqueness, and holonomicity of frames normal
for derivations of the tensor algebra over a manifold were completely solved on arbitrary
submanifolds. In particular, all of these results apply for linear connections on manifolds,
i.e. for linear connections in the tangent bundle over a manifold (seeSection 2.5). The
purpose of this section is to be obtained similar results for linear connections in arbi-
trary finite-dimensional vector bundles whose base and bundle spaces areC∞ manifolds.
The method we are going to follow is quite simple: relying on the conclusions of the
previous sections, we shall transfer the general results of[8], concerning frames normal
for linear transports, and ofSection 2to analogous ones regarding linear connections in
vector bundles. More precisely, the methods of Sections 5-7 of[8] should be applied as
(3.21) holds for parallel transports generated by linear connections. Equivalently well,
as we shall see, the methods and results ofSection 2and of [2–4] can almost directly
be used.

Definition 3.4. Given a linear connection∇ in a vector bundle(E, π,M) and a subset
U ⊆ M. A frame{ei} in E defined over an open subsetV of M containingU or equal to
it, V ⊇ U , is callednormal for∇ overU if in it and some (and hence any) frame{Eµ} in
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T (M) overV the coefficients of∇ vanish everywhere onU . Respectively,{ei} is normal
for ∇ along a mappingg : Q→ M,Q �= Ø, if {ei} is normal for∇ overg(Q).

If one wants to attack directly the problems for existence, uniqueness, etc. of frames
normal for a linear connection∇, the transformation formula(3.5)should be used. Indeed,
if ({ei}, {Eµ}) is an arbitrary pair of frames overV ⊇ U , a frame{e′i = Aji ej } is normal for
∇ overU if for some{E′

µ = BνµEν} in the pair({e′i}, {E′
µ}) is fulfilled Γ ′i

jµ|U = 0, which,
by (3.5), is equivalent to

(ΓνA+ Eν(A))|U = 0. (3.28)

We call this (matrix) equation theequation of the normal frame(s)for ∇ overU or simply
the normal frames equation(for ∇ on U ). It contains all the information for the frames
normal for a given linear connection, if any. Since in(3.28) the matrixB = [Bνµ] does
not enter, a trivial but important corollary of it is that the choice of the frame{Eµ} overV
in T (M) is completely insignificant in a sense that if in({e′i}, {E′

µ}) the coefficients of∇
vanish onU , then they also have this property in({e′i}, {E′′

µ}) for any other frame{E′′
µ} over

V in T (M).
If one likes, he/she could begin an independent investigation of the normal frames

equation (3.28)with respect to theC1 non-degenerate matrix-valued functionA which
performs the transition from an arbitrary fixed (chosen) frame{ei} to normal ones, if any.
But we are not going to do so since this equation has been completely studied in the prac-
tically most important (at the moment) cases, the only thing needed is the existing results
to be carried across to linear connections.

Recall[8, Definition 7.2], a frame{ei} is called strong normal onU for a linear transport
L along paths, for which(3.21)holds, if in ({ei}, {Eµ}) for some frame{Eµ} the 3-index
coefficients’ matricesΓµ of L vanish onU .

Proposition 3.1. The frames normal for a linear connection in a vector bundle are strong
normal for the corresponding to it parallel transport along paths and vice versa.

Proof. SeeCorollary 3.2. �

As we pointed in[8, Section 7], the most interesting problems concerning strong normal
frames are practically solved inSection 2(see also in[2–4]). Let us repeat the arguments
for such a conclusion and state, due toProposition 3.1, the main results in terms of linear
connections in vector bundles.

Let (E, π,M) be finite-dimensional vector bundle withE andM beingC∞ manifolds,
U ⊆ M, V ⊆ M be anopensubset containingU , V ⊇ U , and∇ be linear connection in
(E, π,M). The problem is to be investigated the frames normal for∇ overU or, equivalently,
the ones strong normal for the parallel transport along paths generated by∇.

Above we proved that a frame{e′i} overV in E is normal for∇ overU if and only if
for arbitrarily fixed pair of frames({ei}, {Eµ}), {ei} in E and{Eµ} in T (M), overV there
is a non-degenerateC1 matrix-valued functionA satisfying(3.28), in which Γµ are the

coefficients’ matrices of∇ in ({ei}, {Eµ}), and such thate′i = Aji ej . In other words,{e′i} is
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normal for∇ overU if it can be obtained from an arbitrary frame{ei} via transformation
whose matrix is a solution of(3.28).

ComparingEq. (3.28)with (2.9), we see that, in view of(2.10), they are identical with
the only difference that the size of the square matricesΓ1, . . . , ΓdimM , andA in Section 2
is dimM × dimM, while in (3.28) it is v × v, wherev is the dimension of the vector
bundle(E, π,M), i.e.v = dimπ−1(x), x ∈ M, which is generally not equal to dimM. But
this difference is completely insignificant from the view-point of solving these equations
(in a matrix form) or with respect to the integrability conditions for them. Therefore all
of the results of[2–4], concerning the solution of the matrix differentialequation (3.28),
are (mutatis mutandis) applicable to the investigation of the frames strong normal on a set
U ⊆ M.

The transferring of the results fromSection 2and from[2–4] is so trivial that their explicit
reformulations has a sense if one really needs the corresponding rigorous assertions for some
concrete purpose. By this reason, we want to describe below briefly the general situation
and one its corollary.

Theorem 3.3 (seeTheorem 2.1). If γn : J n → M, J n being neighborhood inRn, n ∈ N,
is a C1 injective mapping, then a necessary and sufficient condition for the existence of
frame(s) normal overγn(J n) for some linear connection in a vector bundle(E, π,M) is,
in some neighborhood(in R

n) of everys ∈ J n, their (3-index) coefficients to satisfy the
equations

(Rµν(−Γ1 ◦ γn, . . . ,−ΓdimM ◦ γn))(s) = 0, µ, ν = 1, . . . , n, (3.29)

whereRµν (in a coordinate frame{Eµ = ∂/∂xµ} in a neighborhood ofx ∈ M) are given
via

Rµν(−Γ1, . . . ,−ΓdimM) := −∂Γµ
∂xν

+ ∂Γν

∂xµ
+ ΓµΓν − ΓνΓµ.

for xµ = sµ, µ, ν = 1, . . . , n with {sµ} being Cartesian coordinates inRn.

From(3.29), an immediate observation follows(cf. 6 and [4, Section 5]): strong normal
frames always exist at every point (n = 0) or/and along everyC1 injective path (n = 1).
Besides, these are theonly caseswhen normal framesalways existbecause for them(3.29)
is identically valid. On submanifolds with dimension greater than or equal to two normal
frames exist only as an exception if (and only if)(3.29)holds. Forn = dimM, Eqs. (3.29)
express the flatness of the corresponding linear connection.

If on U exists a frame{ei} normal for∇, then all frames{e′i = Aji ej } which are normal

over U can easily be described: for the normal frames, the matrixA = [Aji ] must be
such thatEµ(A)|U = 0 for some (every) frame{Eµ} overU in T (M) (see(3.28) with
Γµ|U = 0).

These conclusions completely agree with the ones made in[8, Section 8]concerning
linear connections on a manifoldM, i.e. in the tangent bundle(T (M), πT ,M).



B.Z. Iliev / Journal of Geometry and Physics 45 (2003) 24–53 49

3.5. Inertial frames and equivalence principle in gauge theories

In [24], it was demonstrated that, when gravitational fields are concerned, the inertial
frames for them are the normal ones for the linear connection describing the field and they
coincide with the (inertial) frames in which the special theory of relativity is valid. The last
assertion is the contents of the (strong) equivalence principle. In the present section, relying
on the ideas at the end of[24, Section 5], we intend to transfer these conclusions to the area
of classical gauge theories.6

Freely speaking, an inertial frame for a physical system is a one in which the system
behaves in some aspects like a free one, i.e. such a frame ‘imitates’ the absence (vanishment)
of some forces acting on the system. Generally inertial frames exist only locally, e.g. along
injective paths, and their existence does not mean the vanishment of the field responsible
for a particular force. The best known example of this kind of frames, as we pointed above,
is the gravitational field. Below we rigorously generalize these ideas to all gauge fields.

The gauge fields were introduced in connection with the study of fundamental interactions
between elementary particles.7 Later it was realized[20,21,27]that, from mathematical
view-point, they are equivalent to the concept of (linear) connection on (principal) vector
bundle which was clearly formulated a bit earlier. The present day understanding is that8

“a gauge field is a connection on the principal fibration in which the vector bundle of the
particle fields is associated. More precisely, we identify a gauge field with the connection
1-form or with its coefficients in terms of a local basis of the cotangent bundle of the base
manifold”. Before proceeding on with our main topic, we briefly comment on this definition
of a gauge field.

The definition of a principal bundle (fibre bundle, fibration) and the associated with it
vector bundle can be found in any serious book on differential geometry or its applications—
e.g. in[10, Chapter I, Section 5], [28, pp. 193–204]or[20, p. 26]—and will not be reproduced
here. A main feature of a principal bundle(P, π,M,G), consisting of a bundle(P, π,M)
and a Lie groupG, is that the (typical) fibre of(P, π,M) isG andG acts freely onP to
the right.

Recall[10,20], a connection 1-form (of a linear connection) is a 1-form with values in the
Lie algebra of the groupG, but, for the particular case and purposes, it can be considered
a matrix-valued 1-form, as it is done in[22, p. 118](cf. [10, Chapter III, Section 7]). Let
(E, πE,M,F) be the vector bundle with fibreF associated with(P, π,M,G) and some
(left) actionL ofG on the manifoldF .9 According to known definitions and results, which,
for instance, can be found in[18–20], a connection 1-form on(P, π,M,G) induces a
linear connection (more precisely, covariant derivative operator)∇ in the associated vector

6 The primary role of the principle of equivalence is to ensure the transition from general to special relativity.
It has quite a number of versions, known as weak and strong equivalence principles[25, pp. 72–75], any one of
which has different, sometimes non-equivalent, formulations. In the present paper, only the strong(est) equivalence
principle is considered. Some of its formulations can be found in[24].

7 See, e.g., the collection of papers[26].
8 The next citation is from[22, p. 118].
9 See, e.g.[18] or [28] for details. In the physical applicationsF is a vector space andL is treated as a

representation ofG onF , i.e. a homomorphismL : G→ GL(F ) fromG in the group GL(F ) of non-degenerate
linear mappingsF → F .
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bundle(E, πE,M,F) in which the particle fields ‘live’ as sections.10 The local coefficients
Aijµ of ∇ in some pair of frames({ei}, {Eµ}), {ei} in E and {Eµ} in T (M), represent
(locally) the connection 1-form (gauge field) and are known asvector potentialsin the
physical literature.11 Consequently, locally a gauge field can be identified with the vector
potentials which are the coefficients of the linear connection∇ (in the associated bundle
(E, πE,M,F)) representing the gauge field.

Relying on the previous experience with gravity[24], we define the physical concept
inertial frame for a gauge field to coincide with the mathematical one normal frame for the
linear connection whose local coefficients(vector potentials) represent(locally) the gauge
field. This completely agrees with the said at the beginning of the present section: according
to the accepted procedure[20,30], the Lagrangian of a particle field interacting with a gauge
field is obtained from the one of the same field considered as a free one by replacing the
ordinary (partial) derivatives with the covariant ones corresponding to the connection∇
representing the gauge field. Therefore, in a frame inertial on a subsetU ⊆ M for a gauge
field the Lagrangian of a particle field interacting with the gauge field coincides with the
Lagrangian for the same field considered as a free one.12 So, we can assert that in an inertial
frame the physical effects depending directly on gauge field (but not on its derivatives!)
disappear. From the results obtained in the present work directly follows the existence of
inertial frames for a gauge field at any fixed spacetime point or/and along injective path.
On other subsets of the spacetime, inertial frames may exist only as an exception for some
particular gauge fields.13

The analogy with gravity is quite clear and it is due to the simple fact that the gravitational
as well as gauge fields are locally described via the local coefficients of linear connections,
in the bundle tangent to the spacetime in the former case and in some other bundle over it in
the latter one. This state of affairs can be pushed further. The above-mentioned procedure
for getting the non-free Lagrangian (or field equations) for a particle field interacting with
a gauge one is nothing else than theminimal coupling(replacement, interaction) principle
applied to the particular situation. As a result the free Lagrangian (or field equation) plays
the role of a Lagrangian (field equation) in an inertial frame in the sense of special relativity
[24]. Call a frame{ei}, in the bundle space of the bundle associated with the principal
bundle in which particle fields live,inertial (in a sense of special relativity) if in it the
field Lagrangian (equation) is free one. Now we can formulate theequivalence principle
in gauge field theories (cf.[24, p. 216]). It assets the coincidence of two types of inertial
frames:the normal ones in which the vector potentials of a gauge field(considered as linear

10 The explicit construction of∇ can be found in[29, p. 245ff].
11 For example, see[20,21,27]. Often[22,30]a particle fieldψ is represented as a vector-colon (in a given frame
{ei}) transforming under a representationL(G) of the structure groupG in the group GL(n,K) of non-degenerate
n× n, n = dimF , matrices overK = R,C. In this case, the matricesAµ = [Aijµ]ni,j=1 are written asAµ = AiµTi
whereTi are the matrices (generators) forming a basis of the Lie algebra in the representationL(G)and the function
Aiµ are known as Yang–Mills fields (if the connection satisfies the Yang–Mills equation) which are also identified
with the initial gauge field. Sometimes the matricesAµ are called Yang–Mills fields too and are considered as
(components of) a vector field with values in the Lie algebra ofL(G).
12 Generally this does not mean that in an inertial frame disappear (all of) the physical effects of the gauge field

as they, usually, depend on the curvature of describing it linear connection. Besides, it is implicitly supposed the
Lagrangians to depend on the particle fields via them and their first derivatives.
13 On submanifolds these special fields are selected byTheorem 3.3.
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connection) vanish and the inertial frames in which the Lagrangian(field equation) of a
particle field interacting with the gauge one is free.14 According to the above discussion
the equivalence principle is a theorem, not an axiom, in gauge theories as one can expected
from a similar result in gravity.

Consequently, we have a separate equivalence principle for each gauge field. Can we
speak of a single equivalence principle concerning simultaneouslyall gauge fields and
gravity? The answer is expected (in a sense) to be positive. However, its argumentation and
explanation depends on the particular theory one investigates since at this point we meet
the problem of unifying the fundamental interactions described mathematically via linear
connections in vector bundles. Below we outline the most simple situation, which can be
called a ‘direct sum of the interactions’ and does not predict new physical phenomena but
on its base one may do further research on the subject.

Suppose a particle fieldψ interacts with (independent) gauge fields represented as lin-
ear connections∇(a), a = 1, . . . , n, n ∈ N, acting in vector bundlesξa := (Ea, πa,M, ),
a = 1, ... , n, respectively, withM being a manifold used as spacetime model. To include the
gravity in the scheme, we assume it to be describe by a (possibly (pseudo-)Riemannian) lin-
ear connection∇(0) onM, i.e. in the tangent bundleξ0 := (T (M), πT ,M) = (E0, π0,M).
Let ξ := (E, π,M × · · · ×M), whereM is takenn+ 1 times, be the direct sum[18,21]of
the bundlesξ0, . . . , ξn.15 In this case, the particle fieldψ should be considered as a section
ψ ∈ Sec2(ξ) and the system of gauge fields with which it interacts is represented by a
connection∇ equal to the direct sum of∇(0), . . . ,∇(n), ∇ = ∇(0) × · · · × ∇(n) (see, e.g.
[21, p. 254]).

Now the minimal coupling principle says that the non-free Lagrangian ofψ is obtained
from the free one by replacing in it the partial derivatives with covariant ones with respect
to ∇. Since the fields with whichψ interacts are supposed independent, the frames inertial
for them, if any, are completely independent. Therefore if for some setU ⊆ M and anya =
0, . . . , n there is a frame{e(a)ia : ia = 1, . . . ,dimπ−1

a (x), x ∈ M} normal overU for ∇(a),
the direct product of these frames,{ei := 1, . . .dimπ−1(x), x ∈ M} := {ε(0)i0 ×· · ·× ε(n)in },
is a frame normal overU for ∇. In this sense,{εi} is an inertial frame for the considered
system of fields. We can assert the existence of such frames at any point inM and/or along
any injective path inM. Now the principle of equivalence becomes the trivial assertion that
inertial frames for the system of fields coincide with the normal ones for∇.

4. Conclusion

In this paper have been found/reviewed a number of important results concerning ex-
istence, uniqueness, holonomicity, construction, etc. of frames normal for derivations of
the tensor algebra over a differentiable manifold. They turn to be mutatis mutandis valid
for linear connections in vector bundles. A particular example for that beingTheorem 3.3

14 Notice, here and above we do not suppose the spacetime to be flat.
15 For purposes which will be explained elsewhere the direct sum of the mentioned bundles should be replace with

the bundle(E,�,M)whereE := {(u0, . . . , un) ∈ E0×· · ·×En : π0(u0) = · · · = π(un)} and�(u0, . . . , un) :=
π0(u0) for (u0, . . . , un) ∈ E. So thatπ−1(x) = π−1

0 (x)× · · · × π−1
n (x) for x ∈ M.
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from which follows that any linear connection in a vector bundle admits frames normal at
a single point or/and along an injective path. As a consequence, as we saw, the concept of
an inertial frame (of reference), usually associated to systems in gravitational field, can be
transferred to the area of gauge theories which, in turn, allows the extension of the range of
validity of the principle of equivalence for gravitational physics to systems interacting via
gauge fields (and, of course, gravitationally).

We would like to say that the physical importance of the normal frames, more precisely of
normal coordinates, was notice in different directions already in the early works on normal
coordinates, like[1,31].

At the end, we shall mention the geometric equivalence principle (see[25, p. 76],
[32, p. 19], [33, p. 3]): there are reference frames with respect to which Lorentz invariants
can be defined everywhere on the spacetime and that are constant under parallel transport.
A possible item for further research is to replace here the Lorentz invariants with the ones
(of a representation) of the structure group of a gauge theory which will lead to the trans-
ferring of the (geometric) equivalence principle to the gauge theory whose structure group
is involved.
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